메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최석재 (경희대학교) 이중원 (경희대학교) 권오병 (경희대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제23권 제3호
발행연도
2017.9
수록면
119 - 138 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

목차

1. Introduction
2. SNS 위기관리
3. 방법론
4. 실험
5. 토론
6. 결론
참고문헌(References)
Abstract

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0