메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohamed Saidane (Qassim University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.3
발행연도
2017.9
수록면
400 - 414 (15page)
DOI
10.7232/iems.2017.16.3.400

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The normal probability distribution assumption, to model price changes in Finance, belongs to the largest imperfections in the Value-at-Risk (VaR) estimation. In fact, the financial returns are rather distributed leptokurtic than normally and the empirical distributions are often skewed. In these cases, the normal distribution assumption results in over or underestimation of VaR especially when the quantiles are very high/low. Therefore, it is necessary to put emphasis on respecting the leptokurtic and skewed return distribution. In this paper, we propose a new approach for portfolio VaR estimation, which combines the standard latent factor model with the generalized quadratic autoregressive conditionally heteroskedastic model (GQARCH). This new “hybrid” specification provides an alternative, compact, model to handle co-movements, heteroskedasticity and intra-frame correlations in financial data. For maximum likelihood estimation we have used an iterative approach based on an extended version of the Kalman filter algorithm combined with the Expectation Maximization (EM) algorithm. Using a set of historical data, from the Tunisian foreign exchange market, the model parameters are estimated. Then, the fitted model combined with a modified Monte-Carlo simulation algorithm was used to predict the VaR of the Tunisian public debt portfolio. Through a Backtesting analysis, we found that this new specification produces far more accurate forecasts for the VaR compared to the mixture of factor analyzers and other competing approaches.

목차

ABSTRACT
1. INTRODUCTION
2. THE CHARACTERISTIC OF THE TUNISIAN FOREIGN EXCHANGE MARKET
3. EMPIRICAL LITERATURE AND METHODOLOGY
4. EVALUATION MODELS: BACKTESTING
5. THE DATASET: TUNISIAN FOREIGN EXCHANGE RATES
6. CONCLUSION
REFERENCES

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-001255258