메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이선영 (서울여자대학교) 정주립 (서울여자대학교) 이한상 (한국과학기술원) 홍헬렌 (서울여자대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제7호
발행연도
2017.7
수록면
994 - 1,003 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Ground-glass opacity nodules(GGNs) in chest CT images are associated with lung cancer, and have a different malignant rate depending on existence of solid component in the nodules. In this paper, we propose a method to classify pure GGNs and part-solid GGNs using multiview images and texture analysis in pulmonary GGNs with solid components of 5mm or smaller. We extracted 1521 features from the GGNs segmented from the chest CT images and classified the GGNs using a SVM classification model with selected features that classify pure GGNs and part-solid GGNs through a feature selection method. Our method showed 85% accuracy using the SVM classifier with the top 10 features selected in the multiview images.

목차

ABSTRACT
1. 서론
2. 제안방법
3. 실험 및 결과
4. 결론
REFERENCE

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001212309