메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
변소현 (서울여자대학교) 정주립 (서울여자대학교) 홍헬렌 (서울여자대학교) 송용섭 (서울대학교병원) 김형진 (서울대학교병원) 박창민 (서울대학교병원)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제24권 제5호
발행연도
2018.12
수록면
31 - 39 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 흉부 CT 영상에서 결절의 밝기값, 재질 및 형상 증강 영상 기반의 GGN-Net을 이용해 간유리음영 결절 자동 분류 방법을 제안한다, 첫째, 입력 영상에 결절 내부의 고형 성분의 유무 및 크기 정보가 포함될 수 있도록 밝기값, 재질 및 형상 증강 영상의 활용을 제안한다. 둘째, 다양한 입력 영상을 여러 개의 컨볼루션 모듈을 통해 획득한 특징맵을 내부 네트워크에서 통합하여 훈련하는 GGN-Net를 제안한다. 제안 방법의 분류 정확성 평가를 위해 순수 간유리음영 결절 90개와 고형 성분의 크기가 5mm 미만인 혼합 간유리음영 결절 38개, 5mm 이상 고형 성분의 크기를 가지는 혼합 간유리음영 결절 23개의 데이터를 사용하였으며, 입력 영상이 간유리음영 결절 분류 결과에 미치는 영향을 비교하기 위해 다양한 입력 영상을 구성하여 결과를 비교하였다. 실험 결과, 밝기값, 재질 및 형상 정보가 함께 고려된 입력 영상을 사용한 제안 방법이 정확도가 82.75%로 가장 좋은 결과를 보였다.

목차

요약
Abstract
1. 서론
2. GGN-Net을 이용한 간유리음영 결절 분류
3. 실험 및 결과
4. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000198466