메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제13권 제3호
발행연도
2012.3
수록면
1,091 - 1,098 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 주식 워런트 증권(ELW)의 시장 규모가 급격하게 증가하면서 ELW를 발행한 금융기관들에는 리스크 관리 측면에서 효율적인 헤징 방안에 대한 필요성이 대두되고 있다. 본 연구는 인공신경망 학습 기법을 이용하여 ELW를 헤징하는 데 소요되는 비용을 최소화하는 방안을 제시하고자 하며, 기초자산의 현재가격, 변동성, 무위험이자 율, 만기 등의 시장 상황 변화에 따른 다양한 시나리오에 대한 실험을 통해 본 연구에서 제시하는 방법론의 성능을 기존의 동적 델타 헤징 방법론과 비교 실험하였다. 그 결과 만기 행사가 안 된 상품의 경우 본 연구에서 제시하는 헤 징 방법론이 동적 델타 헤징에 비해 최종 비용이 약 250% 이상 개선되었으며, 행사한 상품은 최종 비용에 있어서 약 25%의 개선 율을 보이는 것을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001161696