메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ye Jian Zhang (호서대학교) Hyonam Joo (호서대학교) Joon Seek Kim (호서대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제23권 제6호
발행연도
2017.6
수록면
446 - 454 (9page)
DOI
10.5302/J.ICROS.2017.17.0020

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many kinds of defects show up during the process of manufacturing display panels. However, mura defects are the most difficult to detect using the conventional image processing algorithms. Many factors cause mura defects to appear in display panels. When images are taken using cameras, mura defects normally show up as relatively dark or bright regions with no definite shape, no clear contours, and very low contrast against their surrounding background. When an imaged mura defect is relatively dark compared to its background, it can be considered a water catchment basin when the whole image is visualized in three dimensions (i.e., is topographically interpreted), and such catchment basins can be detected by watershed algorithms. In this paper, for the accurate segmentation of the mura region, the flooding step of the original watershed algorithm is carefully redesigned to detect the mura defect that exists both inside and at the boundary of an image. The depth of the catchment basins is recorded iteratively and then is used to segment the mura defects. The just noticeable difference (JND) technique is used to quantify the level of the mura defects. It is shown, by extensive experiments, that the proposed algorithm performs well, detecting very low-contrast mura defects, and quickly detects defects located anywhere in the image.

목차

Abstract
I. 서론
Ⅱ. DESCRIPTION OF IMMERSION SIMULATION
Ⅲ. PROPOSED MURADETECTION ALGORITHM
IV. EXPERIMENTAL RESULT
V. 결론
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-000895385