메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준홍 (고려대학교) 서덕성 (고려대학교) 김해동 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제43권 제3호
발행연도
2017.6
수록면
192 - 202 (11page)
DOI
10.7232/JKIIE.2017.43.3.192

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study develops a text spam filtering system for Facebook based on two variable categories: keywords learned from Instagram and meta-information of Facebook posts. Since there is no explicit labels for spam/ham posts, we utilize hash tags in Instagram to train classification models. In addition, the filtering accuracy is enhanced by considering meta-information of Facebook posts. To verify the proposed filtering system, we conduct an empirical experiment based on a total of 1,795,067 and 761,861 Facebook and Instagram documents, respectively. Employing random forest as a base classification algorithm, experimental result shows that the proposed filtering system yield 99% and 98% in terms of filtering accuracy and F1-measure, respectively. We expect that the proposed filtering scheme can be applied other web services suffering from massive spam posts but no explicit spam labels are available.

목차

1. 서론
2. 연구 프레임워크
3. 데이터 수집
4. 데이터 전처리
5. 스팸 분류 모델 구축
6. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-000895276