메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노연우 (충북대학교) 임종태 (충북대학교) 복경수 (충북대학교) 유재수 (충북대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제4호
발행연도
2017.4
수록면
217 - 225 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 실시간으로 생성되는 대용량의 SNS 데이터로부터 유의미한 정보를 찾아내고 분석하는 것이 중요해지면서 핫 토픽 예측에 대한 관심도 크게 증가하고 있다. 기존 핫 토픽 검출 기법은 시간적 속성을 고려하지 않기 때문에 빠르게 변화하는 사회에서 이슈화되는 핫 토픽을 예측하기에는 부적합하다. 본 논문에서는 소셜 네트워크 환경에서 변형된 TF-IDF를 통한 핫 토픽 예측 기법을 제안한다. 변형된 TF-IDF을 이용하여 과거의 IDF 값에 대한 현재의 IDF값의 비율로 순간적으로 이슈화되는 후보 키워드 집합을 추출한다. 추출된 후보 키워드에 사용자의 영향력과 전문성을 고려한 가중치를 부여하여 핫 토픽 예측 지수를 계산한다. 제안하는 기법의 우수성을 보이기 위해 기존의 핫 토픽 검출 기법과의 성능평가를 수행한다. 또한 제안하는 기법이 핫 토픽을 정확히 예측하는지를 보이기 위해 네이버 한글 뉴스 기사를 통한 핫 토픽 예측 기법의 질을 평가한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 핫 토픽 예측 기법
4. 성능평가
5. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0