메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이성직 (서울시립대학교) 김한준 (서울시립대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제14권 제4호
발행연도
2009.11
수록면
59 - 73 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
키워드 추출은 정보검색, 문서 분류, 요약, 주제탐지 등의 텍스트 마이닝 분야에서 기반이 되는 기술이다. 대용량 전자문서로부터 추출된 키워드들은 텍스트 마이닝을 위한 중요 속성으로 활용되어 문서 브라우징, 주제탐지, 자동분류, 정보검색 시스템 등의 성능을 높이는데 기여한다. 본 논문에서는 인터넷 포털 사이트에 게재되는 대용량 뉴스문서집합을 대상으로 키워드 추출을 수행하여 분야별 주제를 제시할 수 있는 키워드를 추출하는 새로운 기법을 제안한다. 기본적으로 키워드 추출을 위해 기존 TF-IDF 모델을 고찰, 이것의 6가지 변형식을 고안하여 이를 기반으로 각 분야별 후보 키워드를 추출한다. 또한 분야별로 추출된 단어들의 분야간 교차비교분석을 통해 불용어 수준의 의미 없는 단어를 제거함으로써 그 성능을 높인다. 제안 기법의 효용성을 입증하기 위해 한글 뉴스 기사 문서에서 추출한 키워드의 질을 비교하였으며, 또한 주제 변화를 탐지하기 위해 시간에 따른 키워드 집합의 변화를 보인다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 키워드 추출 방법
4. 시스템 구현
5. 성능 평가
6. 결론 및 향후 연구
참고문헌
저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-566-019091923