메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mehdy Dousty (University of Calgary) Roberto C. Sotero (University of Calgary)
저널정보
대한전자공학회 대한전자공학회 학술대회 ICEIC 2017 International Conference on Electronics, Information, and Communication
발행연도
2017.1
수록면
334 - 339 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The conventional analysis of temporal signals rely on techniques such as Fourier transform, wavelet analysis, Wigner- Vile distribution, and nonlinear time series analysis methods, that assume either stationarity, linearity, or both. On the other hand, the empirical mode decomposition (EMD) is an adaptive algorithm that decomposes a signal into its fundamental modes of oscillations, or intrinsic mode functions (IMF), and has been shown to produce a meaningful representation of nonlinear and nonstationary processes commonly found in fields such as physics and biology. One of the main problems of the EMD algorithm is the occurrence of end effects, i.e, if the endpoint of the signal is not the extreme point, as the algorithm is applied there appear end swings which back propagates, leading to distorted components in the estimated IMF. Here we introduce a modification to the EMD algorithm to constraint the end effect, based on the use of a Nash nonlinear grey Bernoulli model (NNGBM) to forecast the signal’s boundary. Numerical simulations show that our approach estimates all IMFs with a higher degree of accuracy than previous methods and is more stable under increases in the nonlinear and non-stationarity properties of the signals.

목차

Abstract
I. INTRODUCTION
II. THEORY
III. RESULTS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-002194833