메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xingmou Liu (Chongqing University of Posts and Telecommunications) Yongming Yang (Chongqing University) Yichen Huang (Nanchang, Jiangxi)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.13 No.2
발행연도
2018.3
수록면
781 - 789 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a new approach utilizing empirical mode decomposition (EMD) reconstruction to process vibration signals of a transformer under DC bias caused by high voltage direction transmission (HVDC), which is the potential cause of additional vibration and noise from transformer. Firstly, the Calculation Method is presented and a 3D model of transformer is simulated to analyze transformer deformation characteristic and the result indicate the main vibration is produced along axial direction of three core limbs. Vibration test system has been built and test points on the core and shell of transformer have been measured. Then, the signal reconstruction method for transformer vibration based on EMD is proposed. Through the EMD decomposition, the corrupted noise can be selectively reconstructed by the certain frequency IMFs and better vibration signals of transformer have been obtained. After EMD reconstruction, the vibrations are compared between transformer in normal work and with DC bias. When DC bias occurs, odd harmonics, vibration of core and shell, behave as a nonlinear increase and the even harmonics keep unchanged with DC current. Experiment results are provided to collaborate our theoretical analysis and to illustrate the effectiveness of the proposed EMD method.

목차

Abstract
1. Introduction
2. Transformer Deformation Calculation
3. Vibration Test and Analysis
4. EMD Reconstriction and Result Analysis
5. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0