메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jinsong Yang (Central South University) Jie Liu (Xi’an University of Technology) Jingsong Xie (Central South University)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.85 No.1
발행연도
2023.1
수록면
119 - 133 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The ‘hybrid’ means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The ‘separate’ means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0