메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종훈 (경기대학교) 이석준 (경기대학교) 김동하 (경기대학교) 김인철 (경기대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.12
발행연도
2016.12
수록면
1,365 - 1,375 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 동적 상황 관리
4. 고 수준의 상황 지식 추론
5. 구현 및 실험
6. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001860038