메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sanghoun Song (Incheon National University) Eunjeong Oh (Sangmyung University)
저널정보
한국언어학회 언어 언어 제41권 제3호
발행연도
2016.9
수록면
449 - 480 (32page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This article concerns whether two different numbers of points on a Likert scale task produces different results in acceptability judgment testing. The most popular numbers of points on response scales are 5 and 7, and there seems to be no clear consensus about which of the two is better and why. As the same goes for experimental syntax studies, the choice of the numbers of points on the scales still remains questionable, though the Likert scale task has been widely employed in acceptability judgment testing. The present study compares two experimental data sets using the same stimuli sentences but with different point scales (5 and 7). It includes 46,356 data points and 506 Korean native speakers participated in the study. The comparison between the 5- and 7-point scale data is made in terms of (a) variance of data points, (b) convergence between the linguists’ judgments and the participants’ judgments, and (c) response time. The comparative analysis reveals that the two different point scales do not yield significantly different results. Yet, it is also observed that there exist pros and cons to both sides. The 7-point scale is more demanding than the 5-point scale to the extent that the middle point is rather scarcely used. On the other hand, the 5-point scale is sloppier than the 7-point scale to the extent that the latter captures the variation in acceptability judgments across the participants slightly better.

목차

1. Introduction
2. Basic Discussion
3. Literature Review
4. Previous Experiment: 5-point
5. Current Experiment: 7-point
6. Comparative Analysis
7. Our Findings
8. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-701-001646841