메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min-Chul Hwang Byoung Chul Ko (계명대학교) Jae-Yeal Nam (계명대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제21권 제4호
발행연도
2016.7
수록면
562 - 568 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 다양한 교통 표지판 중에서 운전자의 안전운행에 밀접하게 관계가 있는 속도 표지판을 인식하는 연구에 초점을 맞추고 있다. HOG (histogram of gradient)와 LBP (local binary patterns) 가 객체 인식을 위한 대표적 특징이지만, 이러한 특징들은 패턴을 생성할 때 목표 객체의 회전을 고려하지 않음으로써 객체의 회전에 약한 특성을 가지고 있다. 따라서 본 논문에서는 회전에 강인한 이진 패턴을 생성하기 위해 FRIBP (fast rotation-invariant binary patterns)를 제안하고 있다. 본 논문에서 제안하는 FRIBP 알고리즘은 히스토그램에서 불필요한 레이어를 삭제하고 비교연산과 시프트 연산을 제거하여 빠르게 원하는 특징을 추출할 수 있도록 설계되었다. 제안된 FRIBP 알고리즘은 GTSRB (German Traffic Sign Recognition Benchmark) 데이터에 적용되어, 다른 비교 알고리즘과 유사한 성능을 보여주었다. 또한, 12,630개의 테스트 데이터에 대해 기존의 방법들보다 약 0.47초가 향상된 인식 속도를 보여주었다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. Feature Extraction and Traffic Sign Recognition
III. Results and Discussion
IV. Conclusion
참고문헌(References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-001032465