메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제18권 제4호
발행연도
2014.12
수록면
485 - 494 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
교통 표지판 인식(TSR)은 운전자 보조 시스템(ADAS)의 중요한 부분 중의 하나이다. 하지만 일반적인 주간 상황이 아닌 야간, 눈, 비, 안개 등의 열악한 상황에 대한 연구는 주간 상황과 달리 표지판 고유의 색이 정확히 나타나지 않기 때문에 많이 이루어지지 않고 있다. 본 논문에서는, 주간 상황뿐 아니라 열악한 환경에서도 적용 가능한 기계학습 기반의 교통 표지판 인식 알고리즘을 제안한다. 열악한 환경에서는 일반적인 RGB 색 체계 정보를 이용한 방법은 좋은 성능을 보이지 못하므로 표지판의 형태적 특징을 이용하는 HoG 특징점 추출기를 이용하여 표지판의 형태적 특징을 추출하고 SVM 알고리즘을 이용하여 표지판을 검출하였다. 검출한 표지판의 인식에는 Normalized RGB 색 체계의 25개의 참조점을 통한 의사결정트리를 이용하였다. Intel i5 3.4GHz 환경에서 Full HD 해상도의 이미지에 대해 실험한 결과 안개 및 야간 등의 열악한 환경에서의 검출률은 96.4%, 인식률은 94%로 본 논문에서 제안하는 학습기반의 알고리즘이 열악한 환경에서의 표지판 검출 및 인식에 효율적으로 적용이 가능함을 알 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001388662