메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SangJun Kim (계명대학교) JoonYoung Kwak (계명대학교) ByoungChul Ko (계명대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제21권 제3호
발행연도
2016.5
수록면
425 - 435 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 카메라로부터 입력된 영상으로부터 쌀, 커피, 녹차 등 다양한 원료를 양품과 불량품으로 자동 분류하기 위한 분류 모델을 제안한다. 현재 농산물 원료 분류를 위해서 주로 숙달된 노동력의 육안 선택에 의존하고 있지만 작업시간이 길어질수록 반복적인 작업에 의해 분류 능력이 현저히 떨어지는 문제점이 있다. 노동력에 부분적으로 의존하는 기존 제품의 문제점을 해결하기 위해, 본 논문에서는 평균-이동 클러스터링 알고리즘과 단계별 영역 병합 알고리즘을 결합하는 비전기반 자동 원료 분류 알고리즘을 제안한다. 우선 입력 원료 영상에서 평균-이동 클러스터링 알고리즘을 적용하여 영상을 N개의 클러스터 영역으로 분할한다. 다음단계에서 N개의 클러스터 영역 중에서 대표 영역을 선택하고 이웃 영역들의 영역의 색상과 위치 근접성을 기반으로 단계별 영역 병합 알고리즘을 적용하여 유사한 클러스터 영역을 병합한다. 병합된 원료 객체는 RG, GB, BR의 2D 색상 분표로 표현되고, 병합된 원료 객체에 대해 색상 분포 타원을 만든다. 이후 미리 실험적으로 설정된 임계값을 적용하여 원료를 양품과 불량품을 구분한다. 다양한 원료 영상에 대해 본 논문에서 제안하는 알고리즘을 적용한 결과 기존의 클러스터링 알고리즘이나 상업용 분류 방법에 비해 사용자의 인위적 조작이 덜 필요하고 분류성능이 우수한 결과를 나타냄을 알 수 있었다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. Raw Material Region Segmentation using Mean-Shift Clustering and Stepwise Region Merging
Ⅲ. Experiment and Performance Evaluation
IV. Conclusion
참고문헌 (References)

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0