메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류중선 (한밭대학교) 김진수 (한밭대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제19권 제2호
발행연도
2016.2
수록면
200 - 208 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing in an under-sampled (i.e., under Nyquist rate) representation. A block compressed sensing with projected Landweber (BCS-SPL) framework is most widely known, but, it has high computational complexity at decoder side. In this paper, by introducing adaptive exit criteria instead of fixed exit criteria to SPL framework, an effective fast algorithm is designed in such a way that it can utilize efficiently the sparsity property in DCT coefficients during the iterative thresholding process. Experimental results show that the proposed algorithm results in the significant reduction of the decoding time, while providing better visual qualities than conventional algorithm.

목차

ABSTRACT
1. 서론
2. BCS-SPL 알고리즘의 개요 및 문제점
3. 기존 BCS-SPL 알고리즘의 실험적 고찰 및 제안한 고속화 방법
4. 실험 결과 및 고찰
5. 결론
REFERENCE

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-004-002542728