메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조익성 (경운대학교) 윤정오 (경운대학교) 권혁숭 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제20권 제2호
발행연도
2016.2
수록면
427 - 436 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일반적으로 QRS간격은 시작점을 기준으로 끝점까지의 간격을 말하지만 그 기준이 모호하고 Q와 S의 검출이 정확하지 않아 부정맥 분류 성능을 저하시키는 경우가 발생한다. 본 연구에서는 심전도신호 중 가장 큰 피크인 R파를 정확히 검출한 후 이를 기준으로 위상 변이 추적 기법을 적용하여 Q와 S의 시작점과 끝점을 추출하는 방법을 제안한다. 먼저 전처리 과정을 통해 잡음이 제거된 정확한 R파를 검출한다. 이후 심전도신호의 미분값을 통해 QRS패턴을 분류하고, R파를 기준으로 위상이 변화되는 방향과 횟수를 추적함으로써 Q, S의 시작점과 끝점을 추출하는 방법이다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 R파 검출율은 99.60%의 성능을 나타내었고, 위상 변이 추적 기법의 경우 조기심실수축(PVC)이 30개 이상 포함된 MIT-BIH 10개의 레코드를 대상으로 조기심실수축 분류율을 각각 비교 분석한 결과 94.12%로 우수하게 나타났다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안한 기법
Ⅲ. 실험결과 및 고찰
Ⅳ. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-002649100