메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김문종 (와이즈넛) 이재안 (와이즈넛) 한규열 (와이즈넛) 안영민 (와이즈넛)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제1호
발행연도
2016.1
수록면
50 - 55 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
VOC(Voice of Customer)는 기업의 제품 또는 서비스에 대한 고객의 의견이나 요구를 파악할 수 있는 중요한 데이터이다. 그러나 VOC 데이터는 대화체의 특징으로 인해 내용의 분절이나 중복이 다수 존재할 뿐 아니라 다양한 내용의 대화가 포함되어 유형을 파악하는데 어려움이 있다. 본 논문에서는, 문서에서 중요한 의미를 갖는 키워드와 품사, 형태소 등을 언어 자원으로 선정하였고, 이를 바탕으로 문장의 구조 및 의미를 이해하기 위한 LSP(Lexico-Semantic-Pattern, 어휘 의미 패턴)를 정의하여 구문 의미 이해 기반의 주요 문장을 요약문으로 추출하였다. 요약문을 생성함에 있어 분절된 문장을 연결하고 중복된 의미를 갖는 문장을 줄이는 방법을 제안하였다. 또한 카테고리 별로 어휘 의미 패턴을 정의하고 어휘 의미 패턴에 매칭된 주요 문장이 속한 카테고리를 기반으로 문서를 분류하였다. 실험에서는 VOC 데이터를 대상으로 문서를 분류하고 요약문을 생성하여 기존의 방법들과 비교하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. VOC 요약 및 분류 시스템
4. 실험 및 평가
5. 결론 및 향후 연구 과제
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0