메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tein-Yaw Chung (Yuan Ze University) Ibrahim Mashal (Yuan Ze University) Fong-Ching Yuan (Yuan Ze University) Yuan-Hao Chiang (Yuan Ze University) Osama Alsaryrah (Yuan Ze University)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제5권 제6호
발행연도
2015.12
수록면
520 - 539 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The heterogeneity of mobile and wireless networks exposes mobile users to different access network technologies. In the past, many paradigms have been introduced, such as Always Best Connected (ABC) and Always Best Network Connection (ABNC), to meet user’s preferences. However, they fail to consider multimedia services consisting of video and data, besides voice, for both source and destination. This paper presents a new model called Always Best Multiple Network Connection (ABMNC) to support multimedia services. ABMNC is first formulated as a Multiple Attribute Decision Making (MADM) problem with an embedded utility-based Multiple Knapsack Problem (MKP). In order to reduce computation complexity, the MADM hierarchy of ABMNC is decomposed into a number of iterated sub-MADM hierarchies, and a hybrid Analytic Hierarchy Process (AHP) and a Simple Additive Weighting (SAW) scheme are used to solve them. A novel Heuristic Rate Allocation Algorithm (HRAA) is then presented to reduce the computation complexity of the assignment and rate allocation. Moreover, a comprehensive Heuristic Path Selection Algorithm (HPSA) is proposed to efficiently resolve the ABMNC hierarchy. Finally, computer simulation is performed to study ABMNC, and the results show that our approach, most of the time, chooses the optimal network connections.

목차

Abstract
Introduction
Related Work
Problem Formulation
Heuristic Rate Allocation Algorithm
Hybrid AHP-SAW Approach
Heuristic Path Selection Algorithm
PERFORMANCE EVALUATION
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-505-002246921