메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Masoumi, Isa (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) Ahangari, Kaveh (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) Noorzad, Ali (Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제21권 제1호
발행연도
2018.1
수록면
123 - 137 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0