메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min Soo Kim (Kyungwoon University) Yoon Nyun Kim (Keimyung University) Young Chang Cho (Kyungwoon University)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제20권 제6호
발행연도
2015.12
수록면
37 - 46 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The wireless electrocardiographic monitoring system(WDMS) is designed to be long term monitoring for the early detection of cardiac disorders. The current version of the WDMS can identify two types of cardiac rhythms in real-time, such as atrial fibrillation(AF) and normal sinus rhythm(NSR), which are very important to track cardiac-rhythm disorders. In this study, we proposed the analysis method to discriminate the characteristics statistically evaluated in both time and frequency domains between AF and NSR using various parameters in the heart rate variability(HRV). And we applied various ECG detection methods (e.g., difference operation method) and compared the results with those of the discrete wavelet transform(DWT) method. From the statistically results, we found that the parameters such as STD RR, STD HR, RMSSD, NN50, pNN50, RR Trian, and TNN(p<0.05) are significantly different between the AF and NSR patients in time domain. On the other hand, the frequency domain analysis results showed a significant difference in VLF power(ms²), LF power(ms²), HF power(ms²), VLF(%), LF(%), and HF(%). In particular, the parameters such as STD RR, RMSSD, NN50, pNN50, VLF power, LF power and HF power were considered as the most useful parameters in both AF and NSR patient groups. Our proposed method can be efficiently applied to early detection of abnormal conditions and prevent the such abnormals from becoming serious.

목차

Abstract
1. Introduction
2. Materials and methods
3. Results
4. Discussions
5. Conclusions
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-002252877