메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ray J. Yun (Hongik University) Azizan Aziz (Carnegie Mellon University) Bertrand Lasternas (Carnegie Mellon University)
저널정보
한국디자인학회 Archives of Design Research Archives of Design Research Vol.28 No.4
발행연도
2015.11
수록면
95 - 106 (12page)
DOI
10.15187/adr.2015.11.28.4.95

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background : Four decades of eco-feedback studies have produced promising energy conservation results. Up-to-date smart electricity meters allow eco-feedback strategies such as real-time monitoring with appliance-specific data, social comparison, multiple metrics (e.g., cost, CO₂, trees), and personalized feedback. Unfortunately, eco-feedback presentation methods for such strategies have been under-studied.
Methods : We have investigated the design of energy chart components (i.e., chart type, time range, time intervals), and supportive eco-feedback information (i.e., metrics, personalized advice). Each component was evaluated by measuring the performance of thirty-five participants (e.g., response time and correctness) and their preferences (e.g., understandability and attractiveness).
Result : Whereas most of the energy-monitoring applications show the current day’s energy usage information, it is found that users preferred to see the current week’s energy usage with hourly intervals because this better reveals opportunities for saving energy. Users also preferred a stacked area chart over a stacked bar chart to view the disaggregated individual’s data, and a line chart over a bar chart for social comparison data. The environmental metrics (i.e., CO₂ and tree) confused the users, but cost ($) and KWh were preferred.
Conclusions : This study investigates the eco-feedback presentation methods based on survey measures. The next step in this research is to quantify the amount of energy saved using these methods.

목차

Abstract
1. Introduction
2. Eco-Feedback Strategies
3. Methods
4. Findings and Discussion
5 . Conclusion
References

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0