메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hoanhsu Le (Pukyong National University) Hyunkyu Lee (Pukyong National University)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제15권 제5호
발행연도
2015.10
수록면
17 - 29 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rapid growth of users in social networking services has pushed many businesses to adopt social media. In several industries, such as franchise coffee chains, where many companies need to interact often with customers, social networking sites have been used as the most effective tools. Therefore, a big data of user-generated contents in such social networking sites is freely available to every company in the industry. This opens opportunities for increasing competitive advantage and effectively accessing competitive environment of businesses via mining that big data. The companies can monitor and analyze customer-generated contents not only about their own brands but also about their competitive brands on social media sites. This paper proposed a method to apply mining social network data in the context of franchise coffee brands. We conducted a research on ten coffee chains including Starbucks, Caffebene, Tom-N-Tom Coffee, Angel-in-us Coffee, Hollys Coffee, The Coffee Bean & Tea Leaf, Beans Bins Coffee, Ediya Coffee, A Twosome Place, Coffine Gurunaru with unstructured textual data from Facebook in South Korean market. The results show that the companies can extract business value from mining the huge amount of available social media data and strategically use them for attaining competitive advantages. Based on this study outcomes, we provided recommendations to help companies develop their social media competitive analysis strategy.

목차

Abstract
I. Introduction
Ⅱ. Literature Review
Ⅲ. Research Method
Ⅳ. Findings and Discussions
V. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-326-002084751