메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wen-wen Li (Southeast University) Wen-ping Wang (Southeast University) Tian-tian Zhou (Southeast University) Ying-bo Qin (Southeast University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
1,656 - 1,661 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Industrial sectors have resulted in a large amount of pollution. Environmental degradation problem requires more indepth research on relationships between different sectors’ economic output and pollutant emissions. This paper analyzes the relationship between industrial economy and ecology. On the basis of it, the driving factors of industrial sectors’ pollution emissions are analyzed. Firstly, decoupling elasticity of industrial sectors in Jiangsu province during 2004-2013 is analyzed by Tapio decoupling model. And then, the industrial sectors are classified into three types according to the different decoupling elasticity. Finally, the three types of industrial sectors’ driving factors of industrial solid waste output are decomposed by LMDI method. The results show that: industrial sectors in Jiangsu province are divided into strong decoupling sectors, weak decoupling sectors and expansive negative decoupling sectors; economic development significantly promotes the increase of industrial solid waste output of all sectors; technology improvement and industrial structure largely decrease industrial solid waste output of strong decoupling sectors and weak decoupling sectors; however, technology improvement accelerates industrial solid waste output of expansive negative decoupling sectors; the role of industrial structure factor changes from restraint to promotion of expansive negative decoupling sectors.

목차

Abstract
1. INTRODUCTION
2. DECOUPLING OF INDUSTRIAL SECTORS IN JIANGSU PROVINCE
3. DRIVING FACTORS ANALYSIS BASED ON LMDI MODEL
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001919725