본 논문에서는 투표기법을 이용하여 서술형 주관식 문제에 대한 학습자 답안을 자동으로 채점하는 모델을 제안한다. 제안하는 방법은 모델 구축 비용을 줄이기 위해서, 문제 유형별로 세분화하여 서술형 주관식 답안 자동 채점 모델을 따로 구축하지 않는다. 제안하는 방법은 서술형 주관식 답안 자동 채점에 유용한 자질을 추출하기 위해서, 모범 답안과 학습자 답안을 비교한 결과를 바탕으로 다양한 자질을 추출한다. 제안하는 방법은 답안 채점 결과의 신뢰성을 높이기 위해서, 각 학습자 답안을 여러 기계학습 기반 분류기를 이용하여 채점하고, 각 채점 결과를 투표하여 만장일치로 선택한 채점 결과를 최종 채점 결과로 결정한다. 실험결과 기계학습 기반 분류기 C4.5만 사용한 채점 결과는 정확률이 83.00%인데 반해, 기계학습 기반 분류기 C4.5, ME, SVM에서 만장일치로 선택한 채점 결과는 정확률이 90.57%까지 개선되었다.
TIn this paper, we propose a model automatically scoring a student's answer for a descriptive problem by using a voting method. Considering the model construction cost, the proposed model does not separately construct the automatic scoring model per problem type. In order to utilize features useful for automatically scoring the descriptive answers, the proposed model extracts feature values from the results, generated by comparing the student's answer with the answer sheet. For the purpose of improving the precision of the scoring result, the proposed model collects the scoring results classified by a few machine learning based classifiers, and unanimously selects the scoring result as the final result. Experimental results show that the single machine learning based classifier C4.5 takes 83.00% on precision while the proposed model improve the precision up to 90.57% by using three machine learning based classifiers C4.5, ME, and SVM.