메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제18권 제4호
발행연도
2013.4
수록면
19 - 26 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
의사 샘플 신경망은 학습 샘플의 수가 적은 경우 학습된 신경망이 국부 최적해에 빠져 성능이 저하되는 것을 보완하기 위해 기존 샘플들로부터 의사 샘플을 생성하고 이를 통해 해공간을 평탄화 시킴으로써 학습된 신경망의 성능을 향상시킬 수 있는 신경망의 변형이다. 이는 학습 샘플의 양에 관한 문제로 이 논문에서는 이에 더해 학습 샘플의 질을 향상시킴으로써 학습된 신경망의 성능을 더욱 높일 수 있는 방법을 제시하였다. 잡음이 적게 포함된 전형적인 학습 샘플들만이 주어지고 입력 특징 중 출력과 연관성이 높은 특징만을 사용함으로써 학습된 신경망의 성능을 높일 수 있음은 자명하다. 따라서 이 논문에서는 커널밀도 추정을 통해 비전형적인 학습샘플을 제거하고 입력값이 출력값에 미치는 영향을 나타내는 연관성 척도를 사용하여 연관성이 적은 특징을 제거함으로써 의사 샘플 신경망의 성능을 향상시킬 수 있음을 보였다. 제시한 방법의 유효성은 토석류 데이터를 이용한 실험을 통해 확인할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0