메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제11호
발행연도
2012.11
수록면
11 - 18 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
토석류 퇴적 모델은 토석류에 의한 피해지 예측을 위해 random walk model(RWM)을 사용하여 구성한 모델로 피해지 예측에서 그 효용성이 입증되었지만 몇 개의 자유 파라미터가 실험적으로 결정되어야 하는 문제점이 있다. 파라미터를 자동으로 추정하기 위한 방법은 여러 가지가 있지만 토석류 데이터는 학습 데이터의 크기가 작아 기존 학습 기법을 적용하는데 어려움이 있다. 이 논문에서는 학습 데이터 크기 문제를 완화할 수 있는 신경망의 변형인 의사 샘플 신경망을 제안하였다. 의사 샘플 신경망은기존 샘플로부터 의사 샘플을생성하고 이를 학습에 사용한다. 의사 샘플은 해공간을 평탄화시키고 국부 최적해에 빠질 확률을 줄여줌으로써 기존 신경망에 비해 안정적인 파라미터 추정이 가능해진다. 이러한 사실은 실험 결과 통해 확인할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0