메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
연승근 (충북대학교) 이윤애 (미르기술) 박태형 (충북대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제21권 제3호
발행연도
2015.3
수록면
276 - 282 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

목차

Abstract
I. 서론
II. SMD 패키지 자동 분류 문제
III. 시스템 구성
IV. 실험결과
V. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001155727