메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강윤정 이재일 (제주대학교) 배진호 (제주대학교) 이승우 (국방과학연구소) 이종현 (제주대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제51권 6호
발행연도
2014.6
수록면
201 - 208 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 DTW 결과를 이용하여 분류기 구조를 설계하는 알고리즘을 제안한다. 제안된 알고리즘은 다수 클래스의 데이터를 분류하기 위한 SVM 기반 이진트리 구조를 설계하는데 있어 DTW 결과를 이용한다. 각 클래스에 대한 데이터를 DTW의 입력으로 하여 얻어진 결과행렬의 열의 합을 이용하여 계산된 임계치를 기준으로 SVM 기반 이진트리 구조(SVM-BTA)를 설계한다. 제안된 알고리즘의 성능 비교를 위해 데이터베이스와 k-means 알고리즘을 이용한 이진트리 구조의 분류 결과를 비교한다. 분류에 사용된 데이터는 수중과도소음 데이터베이스의 18개 클래스 333개의 데이터이다. 제안된 분류기는 데이터베이스의 체계를 이용한 분류기에 비해 분류성능이 향상되었고, k-means 알고리즘을 이용한 분류기에 비해 비 생물소음의 검출 확률이 향상되었다. 제안된 SVM-BTA는 생물 소음(BO) 68.77%, 기계 소음인 체인(CHAN) 92.86%, 그 외의 기계 소음 및 음향학적 소음, 기타소음의 6종은 100%로 분류한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 데이터베이스 및 분류기
Ⅲ. 이진트리 구조 설계
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002507339