메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김주호 (제주대학교) 복태훈 (제주대학교) 팽동국 (제주대학교) 배진호 (제주대학교) 이종현 (제주대학교) 김성일 (국방과학연구소)
저널정보
한국해양공학회 한국해양공학회지 한국해양공학회지 제26권 제4호
발행연도
2012.8
수록면
57 - 63 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a Bayesian classifier based on PCA (principle component analysis) is proposed to classify underwater transient signals using 16<SUP>th</SUP> order LPC<linear predictive coding> coefficients as feature vector. The proposed classifier is composed of two steps. The mechanical signals were separated from biological signals in the first step, and then each type of the mechanical signal was recognized in the second step. Three biological transient signals and two mechanical signals were used to condut esperiments. The classification ratios for the feature vectors of biological signals and mechanical signals were 94.75% and 97.23, respectively, when all 16 order LPC vector were used. In order to determine the effect of underwater noise on the classification performance, underwater ambient noise was added to the test signals and the classification ratio according to SNR (signal-to-noise ratio) was compared by changing dimension of feature vector using PCA. The classification ratios of the biological and mechanical signals under ocean ambient noise at 10dB SNR, were 0.51% and 100% respectively. However, the ratios were changed to 53.07%and 83.14% when the dimension of feature vector was converted to three by applying PCA. For correct, classification, it is required SNR over 10dB for three dimension feature vector and over 30dB SNR for seven dimension feature vector under ocean ambient noise environment.

목차

ABSTRACT
1. 서론
2. 수중 과도신호 및 수중 소음신호
3. 주성분 분석과 베이즈 분류기
4. 결과
5. 결론
후기
참고문헌

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-559-003373298