메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안광모 (충북대학교) 김윤석 (충북대학교) 김영훈 (청강문화산업대학교) 서영훈 (충북대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제14권 제4호
발행연도
2013.12
수록면
581 - 587 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 레빈쉬타인 거리(Levenshtein distance)를 이용한 감성 분류 방법을 제안한다. 감성 자질에 레빈쉬타인 거리를 적용하여 BOW(Back-Of-Word)를 생성하고 이를 학습 자질로 사용한다. 학습모델은 지지벡터기계(support vector machines, SVMs)와 나이브 베이즈(Naive Bayes)를 이용하였다. 실험 데이터로는 다음 영화 사이트로부터 영화평을 수집하였으며, 수집한 영화평은 총 2,385건이다. 수집된 영화평으로부터 감성 어휘를 수작업을 통해 수집하였으며 총 778개 어휘가 선별되었다. 실험에서는 감성 어휘에 레빈쉬타인 거리를 적용한 BOW를 이용하여 기계학습을 수행하였으며, 10-fold-cross validation 방식으로 분류기의 성능을 평가하였다. 평가 결과는 레빈쉬타인 거리가 3일 때 다항 나이브 베이즈(Muitinomial Naive Bayes) 분류기에서 85.46%의 가장 높은 정확도를 보였다. 실험을 통하여 본 논문에서 제안하는 방법이 문서 내의 철자 오류에 대해서도 분류 성능에 영향을 적게 받음을 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. LD를 이용한 자질 추출과 기계학습
4. 실험 및 결과 분석
5. 결론 및 향후 연구
References

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001315357