메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kichun Lee (Hanyang University) So Yun Choi (Kookmin University) Jae Kyeong Kim (Kyung Hee University) Hyunchul Ahn (Kookmin University)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제20권 제1호
발행연도
2014.3
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 관람객의 반응에 따라 실시간으로 대응하여 관객의 몰입과 만족도를 증대시키는 인터랙티브 전시 서비스에 대한 학계와 산업계의 관심이 높아지고 있다. 이러한 인터랙티브 전시 서비스를 효과적으로 구현하기 위해서는 관객의 반응을 통해 해당 관객이 느끼는 감정 상태를 추정할 수 있는 지능형 기술의 도입이 요구된다. 인간의 감정 상태를 추정하기 위한 시도들은 많은 연구들에서 이루어져 왔고, 그 중 대부분은 사람의 얼굴 표정이나 소리 반응을 통해 감정 상태를 추정하는 방식을 도입하고 있다. 하지만, 최근 소개되고 있는 연구들에 따르면 단일 반응이 아닌 여러 반응을 종합적으로 고려하는 이른바 멀티 모달(multimodal) 접근을 사용했을 경우, 인간의 감정 상태를 보다 정확하게 추정할 수 있다. 이러한 배경에서 본 연구는 키넥트 센서를 통해 측정되는 관객의 얼굴 표정, 몸짓, 움직임 등을 종합적으로 고려한 새로운 멀티모달 감정 상태 추정 모형을 제안하고 있다. 제안모형의 예측 기법으로는 방대한 양의 데이터를 효과적으로 처리하기 위해, 몬테칼로(Monte Carlo) 방법인 계층화 샘플링(stratified sampling) 방법에 기반한 다중회귀분석을 적용하였다. 제안 모형의 성능을 검증하기 위해, 15명의 피실험자로부터 274개의 독립 및 종속변수들로 구성된 602,599건의 관측 데이터를 수집하여 여기에 제안 모형을 적용해 보았다. 그 결과 10~15% 이내의 평균오차 범위 내에서 피실험자의 쾌/불쾌도(valence) 및 각성도(arousal) 상태를 정확하게 추정할 수 있음을 확인할 수 있었다. 이러한 본 연구의 제안 모형은 비교적 구현이 간단하면서도 안정성이 높아, 향후 지능형 전시 서비스 및 기타 원격학습이나 광고 분야 등에 효과적으로 활용될 수 있을 것으로 기대된다.

목차

1. Introduction
2. Research Model
3. Empirical Validation
4. Conclusion
References
국문요약

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-003-001311653