메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송재복 (고려대학교) 황서연 (고려대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제20권 제3호
발행연도
2014.3
수록면
372 - 379 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper surveys past and state-of-the-art SLAM technologies. The standard methods for solving the SLAM problem are the Kalman filter, particle filter, graph, and bundle adjustment-based methods. Kalman filters such as EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter) have provided successful results for estimating the state of nonlinear systems and integrating various sensor information. However, traditional EKF-based methods suffer from the increase of computation burden as the number of features increases. To cope with this problem, particle filter-based SLAM approaches such as FastSLAM have been widely used. While particle filter-based methods can deal with a large number of features, the computation time still increases as the map grows. Graph-based SLAM methods have recently received considerable attention, and they can provide successful real-time SLAM results in large urban environments.

목차

Abstract
I. 서론
II. Kalman Filter 기반 SLAM
III. Particle Filter 기반 SLAM
IV. Graph 및 Bundle Adjustment 기반 SLAM
V. 결론
REFERENCES

참고문헌 (53)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001276848