메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍성삼 (가천대학교) 한명묵 (가천대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제23권 제5호
발행연도
2013.10
수록면
385 - 391 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
빅 데이터는 일반적으로 사용되는 데이터 관리 시스템으로 데이터의 처리, 수집, 저장, 탐색, 분석을 할 수 없는 큰 규모의 데이터를 말한다. 빅 데이터 기술인 맵 리듀스(MapReduce)를 이용한 병렬 GA 연구는 Hadoop 분산처리환경을 이용하여, 맵 리듀스에서 GA를 수행함으로써 GA의 병렬처리를 쉽게 구현할 수 있다. 기존의 맵 리듀스를 이용한 GA들은 GA를 맵 리듀스에 적절히 변형하여 적용하였지만 잦은 데이터 입출력에 의한 수행시간 지연으로 우수한 성능을 보이지 못하였다. 본 논문에서는 기존의 맵 리듀스를 이용한 GA의 성능을 개선하기 위해, 맵과 리듀싱과정을 개선하여 맵 리듀스 특징을 이용한 새로운 MRPGA(MapReduce Parallel Genetic Algorithm)기법을 제안하였다. 기존의 PGA의 topology 구성과 migration 및 local search기법을 MRPGA에 적용하여 최적해를 찾을 수 있었다. 제안한 기법은 기존에 맵 리듀스 SGA에 비해 수렴속도가 1.5배 빠르며, sub-generation 반복횟수에 따라 최적해를 빠르게 찾을 수 있었다. 또한, MRPGA를 활용하여 빅 데이터 기술의 처리 및 분석 성능을 향상시킬 수 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. MRPGA(MapReduce Parallel Genetic Algorithm)
4. 실험 및 평가
5. 결론 및 향후연구
References

참고문헌 (2)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0