메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강대기 (동서대학교) 황기현 (동서대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제13권 제4호
발행연도
2009.4
수록면
805 - 812 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계학습을 응용한 많은 침입 탐지 시스템들에서 n-그램 접근 방법이 사용되고 있다. 그러나, n-그램 접근 방법은 확장이 어렵고, 주어진 시퀀스에서 획득한 n-그램 들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, 일반화된 k-절단 서픽스 트리(generalized k-truncated suffix tree;k-TST) 기반의 n-그램 증강 나이브 베이스(n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하여 보았다. 제안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스(naive Bayes) 알고리즘과 서포트 벡터 머신(support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 호스트 기반 침입 탐지 벤치 마크 데이터와 비교하였다. 공개된 호스트 기반 침입 탐지 벤치마크 데이터인 뉴 멕시코 대학(University of New Mexico)의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예:n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배의 문제도 해결하면서, 동시에 더 정확한 침입 탐지기를 생성해 냄을 알 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 실험 및 결과
Ⅳ. 결론
참고문헌

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0