메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정성민 (국민대학교) 김현석 (국민대학교) 김영재 (국민대학교) 윤명근 (국민대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.7
발행연도
2019.7
수록면
599 - 605 (7page)
DOI
10.5626/JOK.2019.46.7.599

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성코드가 급증하여 기계 학습 기반의 자동 탐지 연구가 중요해지고 있다. 악성코드 실행파일로부터 추출되는 opcode 시퀀스는 악성코드 탐지에 좋은 특징이기 때문에 바이트 기반의 n-그램 처리 기법을 거쳐 기계 학습의 입력 데이터로서 폭넓게 사용되고 있다. 본 논문에서는 처리 속도와 저장 공간 측면에서 기존 n-그램 방식을 크게 향상시키는 기본 블록 단위의 딥러닝 입력 데이터 가공 기법인 V-그램을 새롭게 제안한다. V-그램은 opcode 시퀀스로부터 의미 없는 입력 데이터의 불필요한 생성을 막을 수 있다. 본 논문에서는 64,000개 이상의 실제 정상 및 악성코드 파일을 수집하여 진행한 실험을 통해서, V-그램이 처리 속도와 저장 공간, 그리고 탐지 정확도 측면에서 모두 기존의 n-그램 기법보다 우수하다는 것을 검증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 기본 블록과 딥러닝 기반의 악성코드 탐지 모델
4. 실험 결과
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0