메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성정민 (경북대학교) 하호건 (경북대학교) 최봉열 (경북대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제50권 7호
발행연도
2013.7
수록면
216 - 224 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
영상분할에 사용되는 문턱치 처리 방법들 중 Otsu 방법은 클래스 내 분산(within-class variance)을 이용하여 최적의 문턱치를 자동으로 추정한다. 이때, Otsu 방법은 각 클래스(class)의 통계적 분포를 표현함에 있어 분산을 사용하며, 이러한 분산은 평균으로부터 해당 자료까지의 거리 제곱으로 표현된다. 그 결과, Otsu 방법의 최적 문턱치는 분산의 크기에 큰 영향을 받으며, 분산들 중 크기가 큰 쪽으로 편향되는 문제점을 보인다. 이에 본 논문은 분산을 표준편차로 변경함으로써 이러한 현상을 감소시켰으며, 보다 정확한 문턱치를 추정할 수 있었다. 본 논문은 기존의 클래스 분산(class variance)을 클래스 표준편차(class standard deviation)로 대체하였으며, 문턱치 선택 기준으로서 클래스 내 표준편차(within-class standard deviation)을 제안하였다. 타당성을 검증하기 위해 두 개의 정규분포 히스토그램(histogram) 및 음영이 있는 영상들에 대해 모의실험을 수행하였으며, 제안된 방법을 Otsu 방법 및 기존의 방법들과 비교하였다. 또한, 객관적 성능평가(Misclassification Error)를 통해 제안된 방법의 우수성을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002920067