메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
연구보고서
저자정보
Jae-Wan Park (Chonnam National University) Jong-Gu Kim (Chonnam National University) Dong-Min Kim (Chonnam National University) Min-Yeong Chong (Kwangju Women’s University) Chil-Woo Lee (Chonnam National University)
저널정보
대한전자공학회 대한전자공학회 기타 간행물 Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV) 2010
발행연도
2010.2
수록면
427 - 430 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a learning algorithm of touch gesture using HMM for tabletop display. Touch gestures are classified into the two groups that are the single and multi stroke gestures according to the number of strokes. The input images which are obtained by a video camera include the strokes. The chain code can be utilized to represent the gesture stroke with the directional codes as feature vector. In this algorithm we use ten gestures and the feature of each gesture is represented as one hundred directional codes. We have defined the gestures to be shaped independently among others, and they can be recognized by the comparison with the previously trained model. For the definition of new gesture which is not defined at the first learning time we give the meaning of the gesture and then apply the learning algorithm to expand the recognition range. We have implemented a real-time gesture recognition system on the tabletop display. The experimental result shows the robustness of the gesture recognition system.

목차

Abstract
1. Introduction
2. Related works
3. Touch Gesture Recognition
4. Experimental results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0