메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준엽 (중앙대학교) 박승민 (중앙대학교) 고광은 (중앙대학교) 심귀보 (중앙대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제22권 제6호
발행연도
2012.12
수록면
774 - 779 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 brain-computer interface (BCI)를 통해 움직임 상상 시 측정된 뇌-활동전위신호(EEG)에 내포된 행동의도의 패턴을 보다 정확하게 분류하기 위한 최적 EEG 채널 선택 기법을 제안한다. 기존의 EEG 측정실험에서는 실험 설계자에 의해 대뇌 기능적 피질 분류를 이용하여 인위적으로 선별된 채널을 활용하거나 측정기기가 수용 가능한 전체 채널을 사용해왔으며, 일정 수준의 패턴 분류 정확도를 얻을 수 있었지만 다수의 채널로 인해 Common Spatial Pattern (CSP) 등의 패턴특징 추출 시 overfit 및 계산 복잡도 증가의 문제가 발생되었다. 이를 극복하기 위하여 방안으로 본 논문에서는 binary particle swarm optimization (BPSO)을 기반으로 다수의 채널 중 최적 채널을 자동으로 선택하고, 각각의 채널에 대한 impact factor를 부여함으로써 중요 채널 부근의 채널들에 가중치를 부여하는 선택방법을 제안하였으며, Support Vector Machine (SVM)을 이용하여 다수의 채널을 사용 하였을 때의 정확도와 channel impact factor를 고려한 BPSO를 적용시켰을 때의 정확도를 비교, 분석하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 실험 제안 및 결과
4. 결론 및 향후 연구
References

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-028-000521430