메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
YanChen (Waseda University) Chuan Yue (Waseda University) Shingo Mabu (Waseda University) Kotaro Hirasawa (Waseda University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
2,579 - 2,584 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The survey of the relevant literature showed that the rehave been many studies for portfolio optimization problem and that the number of studies which have investigated the optimum portfoliousing evolutionary computation is quite high. But almost none of these studies deals with genetic relation algorithm(GRA). This study presents an approach to large-scale port folio optimization problem using GRA with a new operator, called guided mutation. In order to pickup the most efficient portfolio, GRA considers the correlation coefficient between stock brands as strength, which indicates there lation between nodes in each individual of GRA. Guided mutation generates off spring according to the average value of correlation coefficients in each individual. A genetic relation algorithm with guided mutation(GRA/G) for the portfolio optimization is proposed in this paper. Genetic network programming(GNP), which was proposed in our previous research, is used to validate the performance of the portfolio generated with GRA/G. The results show that GRA/Gap proach is successful in portfolio optimization.

목차

Abstract
1.INTRODUCTION
2.GENETIC RELATION ALGORITHM WITH GUIDED MUTATION
3.PORTFOLIO SELECTION USING GRA/G
4.EXPERIMENTAL RESULTS
5.CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000766986