메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Huu-Cong Nguyen (Kyungnam University) Shim-Byoung Kyun (Kyungnam University) Chang-Hak Kang (Nokia Co., Ltd.) Dong-Jun Park (DMT Co., Ltd.) Sung-Hyun Han (Kyungnam University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
2,103 - 2,108 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong powerby the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot’s own motions andpostures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In thispaper, we describe an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using awireless microphone. To suppress interference and noise and to attenuate reverberation, we implemented a multi-channel system consisting of an outlier-robust generalized side-lobe canceller (RGSC) technique and a feature-space noise suppression using MMSE criteria. Voice activity periods are detected using GMM-based end-point detection (GMM-EPD). The final hypothesis is selected based on posterior probability. We then select the task in themotion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors.Those are powerful for detecting obstacle with simple calculated algorithm

목차

Abstract
1. INTRODUCTION
2. VOICE RECOGNITION SYSTEM
3. NAVIGATION STRATEGY
4. EXPERIMENTS AND RESULT
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000766042