메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jeong-Hyun Kim (Pusan National University) Jong-Hyun Park (Pusan National University) Dong-Joong Kang (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
1,749 - 1,752 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper propose the probability AdaBoost Algorithm that is made the Gaussian probability distribution of feature value and evaluate the probability value as how to close the mean of the Gaussian probability distribution. In the learning procedure, the weak classifier is selected by the evaluation that is how positive distribution to become independent negative distribution and how positive distribution to close. The weight is updated to exponential "0" or "1" in conventional AdaBoost but the proposal method is updated to exponential the real value between "0" and "1" by the Gaussian distribution. Hence, the selection of weak classifier is reflected more preciously to weight update. It is no specific threshold to study the proposed method using the Gaussian probability distribution of positive feature value. It is learned by 2 distribution of positive and negative date; therefore, The modeling for to classify the positive is more natural. and we prove more previously detection in experiment.

목차

Abstract
1. INTRODUCTION
2. ADABOOST ALGORITHM
3. THE LEARNING METHOD USING GAUSSIAN DISTRIBUTION
4. EXPERIMENT
6. CONCLUSION
ACKNOWLEDGE
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000985796