메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kaushik Deb (University of Ulsan) Kang-Hyun Jo (University of Ulsan)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
687 - 691 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Vehicle license plate recognition (VLPR) is one of the most important topics of using computer vision and pattern recognition in intelligent transportation systems. In order to recognize a license plate (LP) expeditiously, the location of the LP in most cases, must be detected in the initial step. For this reason, detecting the exact and perfect location of a LP from a vehicle image is considered to be the most important and crucial step of a VLPR system, which greatly affects the recognition process and directly influences the accuracy and speed of entire system. In this paper a HSI color based license plate detection method is proposed. In this method, (a) HSI color model is used for detecting candidate regions and (b) vehicle license plate (VLP) regions are verified and detected by using position histogram. In the proposed method, input vehicle images are converted into HSI color images. Then the candidate regions are found by HSI color model on the basis of using hue, saturation and/or intensity. These candidate regions may include LP regions; geometrical properties of LP are then used for classification. Finally, VLP regions containing predetermined LP alphanumeric character are verified and detected by using position histogram. The proposed method is very effective in coping with different conditions such as poor illumination and varied weather comparing with traditional approaches. Experimental results show that the distance from the vehicle varied according to the camera setup.

목차

Abstract
1. INTRODUCTION
2. SPECIFIC FEATURES OF KOREAN VLP
3. PROPOSED ALGORITHM
4. EXPERIMENTAL RESULTS AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000983601