메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상명 (인하대학교) 최원준 (인하대학교) 노태성 (인하대학교) 최동환 (인하대학교)
저널정보
한국추진공학회 한국추진공학회지 한국추진공학회지 제11권 제1호
발행연도
2007.2
수록면
43 - 50 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 고도 변화만을 고려한 탈설계 영역에서 항공기용 터보 축 엔진의 결함 진단을 위해 지지 벡터 장치(SVM)과 인공신경망(ANN)을 Hybrid로 사용한 분할 학습 알고리즘을 사용하였다. 지상 정지 상태에서보다 학습 데이터와 테스트 데이터 수가 크게 증가하지만, 분할 학습 알고리즘을 이용한 가스터빈 엔진의 결함 진단이 고도 변화를 고려한 탈설계 영역에서도 높은 결함 예측 정확성을 가짐을 확인하였다.

목차

ABSTRACT
초록
1. 서론
2. 분할 학습 알고리즘(SLA : Separate Learning Algorithm)
3. 결함 진단 결과
4. 결론
후기
참고문헌

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0