메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종수 (한양대학교) 최찬규 (한양대학교) 유홍희 (한양대학교)
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제38권 제2호
발행연도
2014.2
수록면
205 - 210 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계시스템의 결함을 진단하기 위한 방법으로 패턴인식 기법이 널리 사용되고 있다. 진동신호의 변화를 감지하여 기계시스템의 건전성을 판단하는 방법이 패턴인식 기법이다. 대표적 패턴 인식기법으로 최근 은닉 마르코프 모델과 인공신경망이 여러 분야에서 사용되고 있다. 본 연구에서는 결함진단에 은닉 마르코프 모델과 인공신경망을 혼합한 방법이 제시되었으며 결함진단 대상 구조물로는 크랙을 가진 회전하는 풍력터빈 블레이드가 선정되었다. 본 연구에서는 크랙발생 여부뿐만 아니라 그 위치 및 크기도 동시에 진단하고자 하였다. 아울러서 본 연구에서는 일정 주파수들을 갖는 모멘트를 대상 구조물에 가함으로써 외부 잡음에도 불구하고 높은 결함진단 확률을 가질 수 있도록 하였다.

목차

초록
Abstract
1. 서론
2. 특징벡터 추출
3. 진단 알고리즘의 개요
4. 진단 결과
5. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001157624