메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강은영 (국민대학교) 곽기영 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제17권 제1호
발행연도
2011.3
수록면
153 - 169 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오늘날 기업의 마케팅에 있어 인터넷 환경의 이용은 필수적이며, 좀 더 효율적인 마케팅을 위해 다양한 방법들이 시도되고 있다. 기업들은 온라인마케팅을 통해 다양한 경품이나 포인트 등의 마케팅 비용을 사용하는 것으로 제품이나 서비스를 알려왔다. 특히 웹 2.0의 등장과 함께 기업은 좀 더 적극적으로 고객과 소통하기 위한 노력을 아끼지 않고 있다. 고객들은 회사의 웹사이트에 개인정보를 제공하는 형태로 회원가입을 하여 회사가 제공하는 혜택을 받으면서 제품 광고나 프로모션에 참여하게 된다. 그러나 온라인 마케팅의 운영측면에서 볼 때 현재의 회원관리 시스템은 회원의 모집과 운영에 있어서 효과적이지 못한 문제점이 나타나고 있다. 온라인 환경에서의 고객들은 오프라인 환경에서보다 명확한 자아를 덜 드러내기 때문에 회원가입 과정 중에 일부 악의적인 목적을 가진 고객들이 주변인의 개인정보를 이용하거나 조작하여 중복 아이디를 만들어 활동할 수 있게 된다. 이러한 취약점을 이용하여 중복가입 회원들은 고객들에게 돌아가야 할 경품이나 포인트 등을 가로채어 기업 마케팅 비용의 효율을 떨어뜨리고 있다. 그러나 증가하고 있는 마케팅 비용에 비해 중복회원의 선별 및 이들에 대한 제재를 위한 효과적 방법은 뚜렷하게 제시되지 않고 있다. 따라서 이를 방지하기 위한 체계적인 회원관리 시스템이 요구된다. 본 연구에서는 소셜 네트워크 분석 기법을 이용한 중복회원 식별방법을 제시하고 실제 온라인 고객데이터를 이용하여 그 효과성을 검증한다. 소셜 네트워크는 노드들의 관계를 표현하며, 관계의 유무, 방향 및 강도 등으로 연결 형태를 나타낼 수 있다. 특히 컴포넌트 분석방법은 소셜 네트워크 하위그룹 분석방법으로 네트워크의 내부 그룹을 구분하여 다양한 네트워크 특성을 식별하여 준다. 회원정보 분석에 있어 컴포넌트 분석방법은 전제회원 데이터 내의 의미 있는 정보를 이루고 있는 그룹을 식별하게 된다. 본 연구는 H사의 서로 다른 회원가입 기준을 가진 3개 웹사이트의 회원정보를 사용하여 진행되었다. 제안된 분석방법은 중복회원의 실체를 분석하고 시각화함으로써, 실무적인 측면에서 효율적인 마케팅의 증진을 도울 뿐만 아니라 신뢰성 있는 고객의 의견수렴 및 의사결정에도 도움이 될 것으로 기대된다.

목차

1. 서론
2. 이론적 배경
3. 소셜 네트워크분석 기반 중복고객 식별 방법
4. 중복회원식별 파일롯 연구
5. 실증분석
6. 결론
참고문헌
Abstract
저자소개

참고문헌 (5)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-003-000511942