메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Li Wei (동명대학교) Eung-Joo Lee (동명대학교)
저널정보
한국멀티미디어학회 한국멀티미디어학회 학술발표논문집 2007년도 춘계학술발표논문집
발행연도
2007.5
수록면
57 - 60 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As computer vision technology been developing, while camera becomes standard configuration for personal computer (PC) and computer calculating speed becomes faster and faster. Computer vision have been more popular used in people daily life, people can use computer as an eye to see and recognize the real world. In this paper, we will present a novel electronic head Painting system which is based on human facial feature. Our system firstly detect human face from the input image by using face features in YUV Color model, and then for face candidate, use the nearly reversed relationship information between U and V cluster of face feature to detect mouth region. Then in the detected mouth region, mouth lip region gray level is usually lower than other region but V level higher than others, so we can reversal mouth region gray level and use associated threshold method to pick up mouth region pixels. Geometrical relationship between mouth region and face region boundary can be used to confirm human head rotation angles correspond to camera, which can be used to control brush movement in screen. Then we extract mouth shape feature by segment it into 5*5 pieces and calculate the eigenvector. Got eigenvector can be inputted into recognition machine based on neural network to recognize the mouth shape. Output codes of recognition machine can be judged as command to control painting brush when and with which size of brush to paint. We have made an experiment on windows XP to evaluate the effect of our system. The experiment result showed that our system can represent a good effect for head painting system.

목차

ABSTRACT
1. INTRODUCTION
2. HUMAN HEAD AND MOUTH DETECTION ALGORITHM
3. MOUSE TRACKING MAPPING METHOD AND SHAPE ANALYZING METHOD
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS
6. ACKNOWLEDGEMENT
7. REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004270527