메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이대한 (경상대학교병원) 배선갑 (경상대학교) 서대호 (경상대학교) 강현석 (경상대학교) 배종민 (경상대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제11호
발행연도
2010.11
수록면
1,643 - 1,656 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
여러 품종을 소량으로 생산하는 소형 공장에서 불량품으로 인한 손실을 줄이기 위하여 부품의 양불량을 판단하는 시스템의 개발이 필요하다. 그러한 시스템은 계층형 시간적 메모리(HTM : Hierarchical Temporal Memory) 기술을 이용하여 개발할 수 있다. HTM은 인간 두뇌의 신피질(neocortex)의 동작 원리를 기계학습에 접목시킨 모델이다. HTM 기반의 기계학습 시스템을 사용하기 위해서는 훈련된 HTM 네트워크를 개발해야 하는데, 이를 위해서는 HTM 이론에 대한 지식이 필요하다. 본 연구는 이 HTM 기술을 부품의 이미지 인식에 적용하여 부품에 대한 양ㆍ불량을 판별하는 시스템에서, HTM 네트워크 개발을 지원하는 훈련시스템의 설계와 구현을 제시한다. 이 시스템은 HTM 이론에 대한 지식이 없어도 작업현장의 기술자가 HTM 네트워크를 정확히 훈련시킬 수 있으며, 부품에 대한 모든 종류의 HTM 기반의 판정시스템에 그대로 적용될 수 있다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. HTM과 HTM 네트워크
4. 부품 이미지 인식을 위한 훈련 시스템의 설계
5. 시스템 구현
6. 평가
7. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004434910